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Translates of symmetric stable and other pth order

are considered. An upper bound for the set of admissible trans-
lates of a general pth order process is presented, which is a
partial analog of the reproducing kernel Hilbert space of a sec-
ond order »rocess. For invertible stable processes a dichotomy

is established, i.e. each translate is either admissible or sin-
gular, and the admissible translates are characterized. As a conse-
Juence, most continuous time moving averages and all harmonizable
processes with nonatomic spectral measure have no admissible trans-
late; and the admissible translates of a general harmonizable pro-
cess are characterized. The translates of a mixed autoregressive
moving averages stable sequence are shown to coincide with those of
the Gaussian case.
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0. Introduction and Summary

The Lebesgue decomposition of measures induced by
stochastic processes is important in areas such as statistical
inference and information theory. Of particular interest is the
Lebesgue decomposition between the measures induced by a
stochastic process and its translate by a nonrandom function,
i.e., the problem of detecting a nonrandom signal in additive
random noise.

For Gaussian processes the Lebesgue decomposition has been
fully described and the following dichotomy prevails: two
Gaussian processes are either mutually absolutely continuous, and
then their discrimination is based on a threshold test on the leog
of their Radon-Nikodym derivative (log likelihood ratio) which
has a known expression, or else they are singular, and then they
can be discriminated with probability one (see e.g. [9]). Some
partial results are also available for processes having finite
second moments [1l1l].

The Central Limit Theorem and the stability property
provide the basic reasons for regarding stable processes as a
natural generalization of Gaussian processes. Most of the work
on stable processes focuses on contrasts and similarities between
Gaussian and non-Gaussian stable processes. While the detection
of a nonrandom signal in additive Gaussian noise has been
thoroughly studied, the problem of detecting a nonrandom signal
in additive stable noise has remained largely open.

This work investigates the equivalence and singularity of

measures induced by non-Gaussian stable processes and their
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translates. For non-Gaussian measures, these questions seem to
have been first studied in (12] for infinitely divisible measures
in hilbert space and subsequently in [{24] and [22] for stable
measures.

Sufficient conditions for an element to be an admissible
translate of an infinitely divisible measure in a Hilbert space
were obtained in [12]. However, as observed in [24], these
conditions are difficult to verify and, as simplified for stable
measures, they were found to be false. The structure of the set
of all admissible translates of symmetric stable measures was
investigated in [24], where it was shown that certain stable
processes have no admissible translate. The admissible
translates of a symmetric stable measure with discrete spectral
measure were characterized in [22].

All these works use primarily the representation of the
characteristic functional of stable measures in Hilbert or Banach
space. iHere we work with stable processes and exploit their
spectral representation, which in some cases allows the
formulation of the problem in terms of processes with independent
increments or sequences of independent random variables.

The first section of this paper introduces the setting and
notation, and presents the basic definitions and results on
stable processes.

For pth—order and for symmetric stable processes a

function space is introduced in Section 2 which plays a role

partly analogous to the reproducing kernel Hilbert space of a

DI e N I
Atelatiatatlaia
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el Gaussian or second order process. In particular this space

O

s . . _ . .
;ﬁ: provides an upper bound tfor the set of admissible translates, 1is
.-

a stochastic processes version of a space introduced in [24, p.
249], and extends the results of (24, Proposition 10} to general
symmetric stable processes and of [l1l, Theoreme 4.1) to general
pth—order processes. A lower bound for the set of admissible
translates of a stable process is also provided by exploiting
their structures as mixtures of Gaussian processes, and a
dichotomy is shown for a class of stable processes which includes
all sub-Gaussian and sub-Gaussian-like processes.

In Section 3 stable processes with an invertible spectral
representation are considered. Their admissible translates are
characterized, and a dichotomy is established: each translate is
either admissible or singular. The result is applied to show
that most continuous time moving averages, and all harmonizable
processes with nonatomic spectral measure have no admissible
translate. Thus these processes do not provide realistic models
for additive noise, as every nonrandom signal can be perfectly
detected in their presence. For general harmonizable and for
invertible discrete time mixed autoregressive moving average

processes the set of admissible translates is characterized.




1. Background and notation

The following setting is considered. X=(X({t,w) =X(t);te T) is a
stochastic process on a probability space (Q,F,P) with parameter
set T and real or complex values, i.e. values in X =IR or C. When
X(£) €L (2,F,P) =L (P) for all t ¢T, where p >0, X is called a pth
order process. The linear space L(X) of a pth order process X is
the Lp(P) completion of the set of finite linear combinations of its
random variables £ (X) & sp{X(t);t «T}. x T denotes the set of all
extended X (i.e., real or complex) valued functions on T, C =C(Y'E)
the o-field generated by the cylinder sets of X T and u, the distri-

X
bution of the process X, i.e. the probability induced on C by X:

(C) = P{w;X(*,w) eC}), CeC.

For a nonrandom real or complex function s on T, we are interest-

ed in the Lebesgue decomposition of the distribution Moyt of the

X

process s +X with respect to Myi and in particular in conditions

for u and Wy to be singular (u and for Moy O be

X
). The function

s+X s+x ¥y

i i <<
absolutely continuous with respect to My (us+x ”X

s 1s then called a singular or admissible translate of X respect-
ively.

Here we focus on symmetric a-stable (SaS) processes. A real
random variable X is SaS, 0 <a s2, with scale parameter ][XI[Q e (0,®)
if E{exp(iux)} = exp{-][xllglula}. A real random vector (Xi,..., X)
is SaS (or its components are jointly SaS) if all linear combina-

tions z;=lakxk are SaS. Similarly a real stochastic process
N a
k=1"k

SaS random variables. Wwhen 2 =2 we have zero mean Gaussian random

X = (X(t);t ) is SaS if all linear combinations I X(tk) are




d
ﬁﬁ; variables, vectors and processes respectively. When 0 <a <2, the
EE tails of the distributions are heavier and only moments of order
p < (0,x) are finite with {E(ixlp)}l/p = Cp,a{!xlla’ where the con-
stant Co’a is independent of X. Thus a SaS process X is pth order
for all 0 <p <a, and its linear space L(X) does not depend on o

and is the completion of £(X) with respect to || * . which in

llAa

fact metrizes convergence in probability ([19]).

An important class of SaS processes consists of SaS independ-
ently scattered random measures, which extend the concept of a
stochastic process with independent increments to more general
parameter spaces. Let I be an arbitrary set and I a §-ring of
subsets of I with the property that there exists an increasing se-
quence (In;n eIN) in T with HIn =I. A real stochastic process
Z = (2(A);A e¢1) is called an independently scattered SoS random
measure if for every sequence (An; n ¢«IN) of disjoint sets in I,
the random variables Z(An), n=1,2,... are independent, and when-
ever HAn el then Z(ﬁAn) = ZnZ(An) a.s., and for every A c¢l, Z(A)

is a SaS random variable, i.e. E{exp(iuZ(A)} = exp{-m(a)|u|®} where

..' .
<
i,

]
LI

m(a) = IIZ(A)IIZ. Then m is a measure on [ which extends uniquely

.
1
-

¥'l‘
L 2R

.l
Tl Wl

to a c-finite measure on o(I), and is called the control measure

-‘
'y
Jl

of 2. Conversely, the existence of an independently scattered SaS

..'_ “

random measure with a given control measure is a consequence of

Kolmogorov's consistency theorem.
When I is an interval of the real line, there is an identifi-
cation between independent increments processes and independently

scattered random measures. Namely if X = (X(t),t ¢I) is an in-

dependent increments process and (a,b] cX:an interval,
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X(b) - X(a) can be extended to an independently scattered
random measure on the 8-ring I of bounded Borel sets of I. Con-
versely given an independently scattered random measure Z on I, and
a in I, X(t) = sign(t -a)z((art,avt]), t ¢IL is an independent in-
crements process. When the control measure m is Lebesgue measure,
then X has stationary independent increments,
Efexp(iulX(t) -x(£) )} = exp{-|t -t'| [u]™}, and is called SaS motion
on I.

For any function £ eLa(I,o(I),m) = La(m) the stochastic in-
tegral ffdz can be defined in the usual way and is a SaS random

I
variable with ]Iffdzl[a = ilfflL (m) - The stochastic integral map
o (T

£ +fIde from L (m) into L(Z) is an isometry and
(1.1) L(z) = {[fdz;f eL (m)}.

The stochastic integral allows for the construction of Sa$s
processes with generally dependent values by means of the spectral

representation

(1.2) X(t) = [f(t,u)Z(du),t T,
I

where {f(t,*);t T} cLa(m). In fact every SaS process X has such
a spectral representation in law, in the sense that for some family

{f(t,*),t e} in some La(m),

(1.3) (X(£);t e®) & ([£(t,u)Z(du) it «T)
I
(see e.g., [16] and [l3D. If L(X) is separable, e.g., X is continu-

ous in probability, then LQ(I,m) can be chosen as La([O,l],Leb).
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Specific examples of SxS processes will be considered in tihe fol-

lowing sections.

The covariation [X,Y]1 of two jointly SaS random variables X

and Y with 1 <a <2 is defined by

1.4 X,¥1, _ pxyP 1)
. - 5
Hyll, — EClY]%)
which holds for all 0 <p <a (where y<q> = lyiq-ly, q >0) (see e.qg.
[61). It follows that leliz = [X,X] . 1If X and Y have repre-

sentations fIde and fIgdZ respectively then [X,Y] = fIfg<a_l>dm
In certain cases, such as when working with Fourier transforms,
it is more natural and convenient to work with complex valued
processes. A complex SaS random variable is defined as having
jointly SoS real and imaginary parts. Except for the representa-
tion of the characteristic function, all concepts and results
considered in this section for real SaS random variables and pro-

cesses extend to the complex case (see e.g. (5] and [ 61]).




An upper bound for the set of admissible translates

A space of functions associated with a pth order, 0 <p = 2,

stochastic process will be introduced and seen as a partial exten-

sion of the reproducing kernel Hilbert space (RKHS) associated

with a second order process. We concentrate only on pth order

. processes with p <2 because for those with p 22 the second order

theory is applicable.
Recall that for a second order stochastic process

X =(X(t):;t «eT) with arbitrary index set T, zero mean and covari-
ance function R, the RKHS H of X (or of R) consists of all func-
tions s of the form s(t) =E(X(t)Y), t eT, Y eL(X). If s;(t) =
E(X(t)Yi) then <s,,s > =E(Yl?2) defines an inner product and R is
a reproducing kernel, i.e. for all t «¢T, R(*,t) «<H and s(t) =

<s,R(',t)>H. Also s ¢eH if and only if

N ans(tn)]

< o,

l[sHH = sup
[(E]

h~1Z e
=

{

2.4
anX(tn)\ ]

3

where the supremum is taken over all N ¢ IN, al,..., ay e X and
tl,..., tN eT.

We now introduce the function space of a pth order process with

0 -p £2 and arbitrary index T, and present its properties.

Definition 2.1. The function space IF= IF(X) of a pth order pro-

cess X =(X(t);t «T) with 0 <p <2 is the set of all functions s on

T such that

]
0
[

(e)

sl

&7
3

@ s
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where the supremum is taken over all N ¢« IN, Aqeeeer Ay«

17 tN ¢T.

When 1 <p <2, a representation is known for the bounded linear
functionals on the linear space of X, analogous to the Riesz repre-
sentation for bounded linear functionals on a Hilbert space. This
allows us to express the functions in IF in terms of moments of the

process X. This and further properties of the function space are

collected in the following

Proposition 2.2. Let X=(X(t);t «T) be a pth order »rocess with

l <p <2. Then the following three statements are equivalent:
i) s eIF,
ii) s(t) =EX)YPTY) for v e L(x),
iii) s(t) =E(X(t)W) for W eLp*(P) where 1/p +1/p* =1.

Moreover the following properties hold.

2l silp = NYIP7E 0 i so) =ex) v P, verx).
F Lp(P)
) For each s «IF, with s(t) =E(X(t)Y<p—l>), Yel(X), there 2xtsts a
unique W eLp*(P) (namely w=yP1> satisfying it and
sllg = [19]] .
WSy L u (B)
e) (T, || IIEJ i8 a Banach space isometrically isomorphic to

the quotient space Lp*(P)/E(X)L, where E,(X)l denotes the annthil-

ator of Z(X).A

Proof: 1 =1ii follows by observing that if IISIIIF< ®, then

] (ZN a X(t )) =ZN a s(t_ ) defines a bounded linear functional on
s n=1Tn n n=1ln n

L(X) with norm [|9]|IF. From [7, Proposition 2.1], there exists a

'Y<p-l>) and

unique Y ¢ L(X) such that ws(') = E(
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SN 2.3
4Ny
e
i..":\.' 1 <p-1>
:": = ' " p- = = -
20 slpox = WYL (pyr Thus S(8) = L (X(£) = E(X(£)Y ).
::\: - — <D=- l >
:3:- ii = iii If Y ¢L(X) then W=y P <Lp*(P) and
T oW = |  p-1 = “pole, W
o WL (e 'IY]IL () Also s(t) =E(X(t)Y ) =E(X(E)W).
AN p* P
..-—\l‘ B
\'~‘-I T » - . . . . -
N iii —i. If s(t) =E(X(t)W) then it is clear from its defini-
B \"x'
Y tion that || s|| r is finite.
e a. That ||s]|] = ]lYlip-l follows as in the proof of
2 2 F L, (P)
N i =ii.
_ b. Let s <IF. By iii there exist 2 st*(P) such that
:ff; s(t) =E(X(t)Z). Let £(X)' be the closed linear space
- {z' eLp*(Q);E(Z'?) =0,Y «£(X)} and let Z, be the best approxima-
e tion of Z in £(X)* i.e.
. l - = i —-g ]! Lo, i
'z zolle*(P) inf{||2z -2 ]‘Lp*(P)'Z e £(X)"}.

— oy " .. .
A -
RS

Such a ZO sZ(X)L exist and is unique [21, Corollary 3.5 and

.

a0

v
.

Theorem 1.11l]. Set W = 2 -2, Then E(2Y) = E(WY) for all

Y c£(X) if Z' is such that E(2'Y) = E(zY) for all Y «£(X). Then

.
)

PR

~I I e T T

s e lte
1
o6 f

2 z - 2' <2(X)* and

OEN

S ! = - - — 7 - |l o

2 Tl e = N2 ZOHLP*(P) <lz-e-ehlly e ety e
‘.

—'% : - g ) ' = ! '

o Thus if s(t) =E(X(£)W'), W' <L ,(P), and sy = 1w Ile*(P)
§§3: we must have ‘lw“Lp*(P) S \1W"\Lp*(p) On the other hand

N

A [EC ] a X(t )W) |

A e _ - n=1 < |

o ity ey = I8l = s — <l e
e

= |




£ o N = LR = ! ll . 1 = - U
Therefore LWL ®) W e *IS]'E‘ Putting V=2 -W' we

have V -;E(X)l and

= ! I = 'y = | - [
- HWIle*(P) W Ile*(p) Iz Vipr*(p)-

0 implies W=W'. Since Y<p-l>eLp*(P) and
for s(t) =E(X(t)Y<p-l>) we must have

Thus the unicity of Z

sl

s <p—l>|

= “Y ’!L*(P)

r
_l> p

|
w=y P

c. That (IF, || IIIF) is a normed linear space is clear.
To show that IF is isometrically isomorphic to Lp*(P)/Z(X)i, let

Si EIFI i=l,2,

Si(t) = E(X(t)Wi):

(Sl +52)(t) = E(X(t)W),

where W, W, and W are the unique elements in Lp*(P) such that

Since E(X(t)W) = (s +s,) (t) =E(X(t) (|, +W))) we have

ittw =% Low(P)’ 1
W= (W) +W,) c (X))t i.e. [W] = [W, +W,] =[W, +W,], where [.] denotes

an equivalence class in Lp*(P)/K(X). Similarly if s(t) =E(X(t)W)

and (as)(t) = E(X(t)W) we have [W] = [aW] =a[W]. Hence the map

s - [W] is linear and since ]I[W]llL L (P) /2 (X)L =!|W1|L . (P) =|lsll g
P P

it is an isometric isomorphism.
To finish the proof of ¢ we need to show that IF is complete.
. @® !
Let (s, ;k ¢ IN) be a sequence in IF such that Zk=lllsk“IF< » and

let Wy eLp*(P) be such that l!wkl’Lp*(P) = }{Sk!IIF. Hence

© L. (P). Set s(t) = E(X(t)W).

- L= Pt oy (R4 Y‘m
;k=lliﬂk"Lp*(P) < and W Lk=lwk

Thus




W T W T W T a4 = R MW

I 2.5
"-.‘_.
.y ? K K N
D) | Ya (ls -s)e)] s il Tw -w| Y ax )il
:-.::: n=1 n k=lSk k=l‘dk Lp* (P) n=1 n n Lp (P)
s and
M K K
I - |
1 Tsmsllp s i)W -] >0 as K==,
- X T E L% Lo ()
[} )
Pt
- i.e. Zm_ s =s ¢ IF proving that IF is complete. 2
n=1l"n

] .

?:: Further properties of the function space IF of the process X,
P

.‘.?J

§P for 1 <p €2, analogous to those of a RKHS are the following:

- i) If T is a metric space, functions in IF are as "smooth" as
ﬂﬁ: the process X is in the weak sense, i.e., they are continuous

:Eﬁ (differentiable) if and only if X is weakly continuous (differ-
o entiable) .

r )
25 ii) Norm convergence in IF implies pointwise convergence: and

. the convergence is uniform if HX(t)]|L (P) is uniformly bounded
i'\ If the process X is SaS with 1 <a <2, then it is of pth order
ﬁf for each p e (1,0) and its function space IF does not depend on p
&i but only on o and can be defined by means of the norm || | N and
tsﬂ described by means of covariation instead of moments. Furthermore
itfl the functions in IF can be expressed in terms of the spectral
s
K. " representation of the process.
o

el .

e Corollary 2.3. Let X =(X(t):t «T) be a SaS prcresg with 1 -1 <2
fi and spectral representation
o X(t) = [f(t,u)z(du), t <T,

b I

5:% where Z has control measure m. Then the following three statements
ﬁié are equivalent:

-.:j:"

o

e,

o4

s 5

-
p e
v

ST Tam T e e e T T T T T T e e e ST e . T -
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SRR S e T T T e e ey e T, ~
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-

O < s «: IF,

£5) s(t) =[X(t),¥Y]  Jor Y < L(X),

R

: g s(t) =(f(t,u)z(uwm(du) for z sLa*(m) where 1/a* +1/2 =1.
) I

o

- Moreover the ollowing properties hold.

A ]
A
2

i

'1\".‘
I~
']
0]
s

v
T
R e
ll .'
ot

n a=1
a) sl = ¢, sup— = |yl
¥

i, 8,
.

’
”
'l‘l
LA

For each s e IF there exists a unique 2z eLa*(m)

- s0 and sl g =zl )
-._:-: a*

- The map s > [2z] from IF into La*(m)/ﬂ(f)l, where [-] is
b an equivalence class in La*(m)/ﬂ(f)L, L(f) =sp{f(t,*);t e T}, is

an tsometric tsomorphism.

Proof: i <>ii. It follows from (l.3)

that for all p ¢ {(l1,2)

Kol -
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where 7z = C;?é(P‘l)IIYH;G'PL/@Pl)

Yy

..l ..l -
v and |z]12 715, = cgt Iyl ST
p 14

s ¢eIF if and only if s(t) =[X(t),Y]Ol which does not depend

so that
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ii = iii. If Y«<L(X) then v =£gdz for some g ¢ L(f)= sp{f(t,*);teT;,
and

N.\fl

XX
(SRt

“u

s(t)= [X(t),Y]a = [ff(t,-)dz,[gdzla = ff(t,-)g<°"l>dm = [f(t,*)zdm
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oo _ <a=1> t l _ a=1
o where z =g €L« (M) and ‘IZ'ILG*(m) I’Ylla .
}\3 The proofsof iii => i, the uniqueness of z and of the iso-
’. -
* metric isomorphism are identical to those of Proposition 2.1. C—
.

l‘\_
;j; Further, the well known dichotomy on the admissible translates
'j; of a Gaussian process—namely that the admissible translates of a
[

g? Gaussian process are precisely the functions in its RKHS, and its
b

iﬁ translates by functions outside its RKHS are singular—has a

TN

tﬁﬁ partial analog for pth order processes 0 <p <2, where the RKHS is

replaced by the function space IF. Our result extends that of

N

X Théoréme 4.1 in [11] to pth order processes 0 <p <2, and when

_ﬁj applied to SaS processes with 0 <a <2, it generalizes Proposition 10
gr in [24] (to any SaS process).
':gj Propositicon 2.4. Let X =(X(t):;t «T) be a pth order process with
o 0 <p<2. If s {IF then Us+x LUX. Consequently all admissible
(_:‘ tranglates oF X belong to IF.

ﬂi Proof: The proof is adapted from [18]. If s ¢ IF, then

\ N

o Inzlans(tn)]

o SUP— =%

o | I a x(t )]

= hep B n LP(P)

"i‘

;?; Hence for each n ¢ IN, we can choose Nn' an,k' tn,k' k=1,..., Nn
l;; such that

’ N

- | a s(t )

:--' - n, k n.,k

S k=1 ! > nl/p.

. N

u_f - n

e I a_ . X(t ) |1
o k=1 n,k n,k Lp(P)
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L = 3 i i -
et Sh k=lan,kS(tn,k)' without loss of generality we can con

sider sn >0 for all n. Consider the random variables defined on

(X u‘,f,ux) by

n
Y (x) = ), x e XT.

n (t
k

e~ 2

lan,kx n,k

By the Markov inequality we have

P P P P - PSS
uy (Y 25 /2) sux(|Yn| xs /2) <2 ||Yn||Lp(P)/sn <2¥/n - 0 asn

and

us+X(Yn zsn/Z) uX(Yn +s_ zsn/Z)

uX(Yn z-sn/Z) 2 ux(|Ynl <sn/2)

- > 51 <P P P .
1 uX([Yn| _sn/Z) 2l -2 lIYn”Lp(P)/sn

v

1 -ZP/n - 1 as n »»,

Therefore HylHg e B

From now on we restrict our attention to SaS processes. In
contrast with the Gaussian case, a =2, where the set of admissible
translates is always the entire space IF, i.e. the RKHS, the
set of admissible translates of a SaS process with a <2 may be as
large as the entire function space IF on as small as {0}, as is

seen by the following examples.

Stable Motion: If X=(X(t);t [0,1]) is an SaS motion, i.e., X has

stationary independent SaS increments, it is known [ 3,12 ,24] that

X has no nontrivial admissible translates for 0 <a <2. On the other




s

A" .

- 2.9
‘-

AN

th hand for 1 <a <2, its function space is the space of absolutely con-
~o- . . . . : .

N tinuous functions with s(0) =0 and derivative in L «(Leb), i.e.
N

N t

. IF= {s;s(t) =fs'(u)du, tel0,1], s'eL ,(Leb)}

A 0

1

! : Pell = ' .

( . with I's"IF HS HL*(Leb)

V) &

:Si Sub-Gaussian processes: Let X =(X(t):t «T) be an a-sub-Gaussian
{5? process, i.e. its finite dimensional characteristic functions have
L "-

the form

-_':-i_: N N

o Elexp(i } a X(t )} = exp{-(% ]oa R(tn,tm)am)a/z}
'x‘:_.“ n=1 n,m=1 )

o where R is a covariance function, or equivalently

.r_::_

o (X(t):;t e = (A G(t);t «M

N4
v

where A is a normalized positive a/2-stable random variable independ-

F aindD

ent of the Gaussian process G = (G(t);t «¢T which has zerc mean and

. v s
Sl
PR

r.'l D
P A

e e o o

covariance function R. It follows fram [l4] that the set of adnis-

A®)

sible translates of X coinecides with the RKHS of G, once we observe

:?: that there the proof depends only on the representation of spheric-
T
R ally invariant processes as scale mixtures of Gaussian processes
» \-:_
fﬁf and not on the existence of second moments. Moreover for any
oy - .

s Y e L(x), [x(t),¥] = 2%2(zw?) 1728 (G ()W), where WeL(G) is ob-
ﬂ'.-.'

ke <

e . . . . .
SN tained from G by the same linear operation Y is obtained from X
.r,\- .

(see [7]). Therefore the function space IF of X coincides with the

it

‘15 RKHS of G (and is therefore a Hilbert space).

Sl
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IJ-

-f':‘:;:

Ly
Rra

..

‘el
0]

P S

1‘-\



A AASAka - Rac/ i itk
e A A AR R AR SR al b ot et e M- A A A RO i A ik

N 2.10
®

o
LR
jﬁ} Stable processes as mixtures of Gaussian processes: It has been
snown [l17] that every SiS process X is conditionally Gaussian
}‘ with zero mean, i.e. there exists a sub-o-field G of F such that
Lu
,:ib given G, the law of X is Gaussian with mean zero ané covariance
-
Ti: function R. Denoting by GR such a Gaussian process and by u.
/ its law, we have that for every SaS process X there exists a
-ij. orobability » on the space R of all covariance functions R such
“
\‘:\
:":-\ that
Y]
i, (E) = fu. (E)A(dR)
¢ % R SR
f;- for all E = (. The SaS process X is thus a Gaussian process with
._Tl random covariance function R, and it is easily checked that all
. N - L
quadratic forms Zn,m=lanR(tn’tm)am are positive a/2-stable random
variables. Likewise we have for all E ¢C,
bepx (E) = Ju o (E)A(dR).
R R
It follows that if s is an admissible translate of almost
all GR's, then it is an admissible translate of X too. This
qI: gives a lower bound for the set of admissible translates of X,
:;~ namely
- u n RKHS (R) .
o AcR  ReR\A
L A(A)=0_
S Thus a SaS process will have admissible translates if it is a

mixture of Gaussian processes whose RKHS's have a common part,

» . . ] =
ool i.e. if nReR\ARKHS(R) #{0} for some A () =0.
s
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The converse does not seem to be necessarily true, i.e. an
admissible translate of X may not be an admissible translate of

almost all the Gaussian processes whose mixture is X.

It also follows that a singular translate of X is a singular
translate of almost all the Gaussian processes whose mixture is X,
and furthermore the same event separates them. This gives an up-

per bound for the set of singular translates of X, namely

) ~ RKHS(R)C.
LzR  ReRAVA
A(M)=0

Conversely, if s is a singular translate of a.e. GR(X), it may

not be a singular translate of X; but if furthermore the separating

set of u
+
s GR

singular translate of X.

and Mg does not depend on R a.e. (A}, then s is a
R

When a SaS process is a mixture of Gaussian processes having
the same RKHS then we show that a dichotomy prevails, with every

translate being either admissible or singular.

Provosition 2.5. Let the SaS process X =(X(t);t €¥) be the r\-mixture

of Gaussian processes GR =(GR(t);t eT) such that RKHS(R) =H a.e.
(A). Then s 18 an admisgible translate of X 1f and only <17 s ¢H,

and s 18 a singular translate of X if and only if s £H.

Proof: If s ¢H, then s is an admissible translate of a.e.
GR {\), and hence of X.

Now assume s ¢H. Let RKHS(R) =H for all R eR\A, A (%) =0,
and fix RO < R\A. Then for each n « IN, there exist Nn'

such that

...t '
n n/l' ! nan
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Since for every R ¢ R\A, RKHS(R) =H, there exists 0 <cR <® such

that
N N
n 2 yn 2
Elkzlan,kGR(tn,k)l < CRElk;lan,kGRo(tn,k)[ .
L o _+<Np
As in Proposition 2.4, let s, Zk=lan,ks(tn,k)’ (and WLOG assume
_Np T
s, >0) and Yn(x) _Zk=lan,kx(tn,k)’ X ¢ X7, so that
Nn
2 2,2
ug (Y 2s_/2) s 2°E| 2 an,kGR(tn)l /s,
R k=1
Nn
2,2
< 4cE| ] a. G, (t)]|“/s
R k=1 n,k RO n n
< 4cR/n + 0 as n +=»,
and
Uesg (Yn an/Z) 2 1= g (IYnl >sn/2)
R R
21 - 4%Jn—*l as n +o,
Hence by the dominated convergence theorem
uX(Yn zsn/Z) = £“GR(Yn zsn/Z)A(dR) + 0 as n +o,
and
gy (Y, 28./2) =£uS+GR(Yn 2s /2)A(dR) » 1 as n»=.
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».'::
FQ This implies hy LUy Hence every s ¢H is a singular translate
s,

of X, and the proof of the dichotomy is complete. r

The assumptions of Proposition 2.5 are satisfied when X

is sub-Gaussian, i.e. X is the mixture of the mutually singular

1/2G

Gaussian process a , a >0, which have identical RKHS; or in

the more general case where X is the mixture of Gaussian processes
with random covariance function of the form S§=1Aan(t,s), where

the Rn's are fixed (nonrandom) covariances such that Rn -c R _1is

nm m
nonnegative definite for all n,m=1,...,N, and some 0 <cnm <,
and the positive random variables Al""'AV’ are jointly a/2-stable.

The usefulness of these general remarks is limited by the
fact that the only SaS mixtures of Gaussian processes, which

are currently known explicitly, are the sub-Gaussian processes,

1/2
=lAn

vositive 1/2-stable and independent of the mutually independent

.. N .
and the more general finite sums Zn Gn' where (Al""’AN) is

Gaussian processes Gl""’GV'

Further examples where the set of admissible translates is

trivial or a proper subset of the function space IF are presented in
the next section. It should finally be recalled that the set of
admissible translates of a SaS process is always a linear space,
even if it-is not the entire function space IF [24, Corollary 5.1].

However, as will be seen in the next section, the restriction of

if-E{IF to the set of admissible translates may not be the most
natural way to define a topology on it. Also, from the linear

structure we have that Mgex Uy = My <<u (see e.g. [22]) so

s+X

that for every admissible translate s, u and u, are equivalent.

s+X

@7

.
.t -

_)FJ_‘J_ "3‘ .‘.’
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3. Processes with invertible spectral representation

In this section we present some general results on the admis-
sible translates of certain SaS processes with invertible spectral
representation.

Let X =(X(t);t «7T) be an SaS stochastic processes with spectral
representation as in (l.2). It follows from the continuity of the
stochastic integral map f +fde and (l.1l) that the representing
functions {f(t,*):;t «7T} are linearly dense in L,(m), i.e. that
L(£) = Ll(m), where L (f) is the completion of £(f) =sp{f(t,*);t <M}
in L (m), if and only if L(X) =L(2). Processes satisfying this
condition will be said to have an invertible svectral rerresentatisi
Or more simply to be <nvertidie.

Every Gaussian process is invertible [ 4, construction in
Theorem 2]. This is not generally true for non-Gaussian SaS pro-
cesses as can be seen from the fact that the linear space of a sub-
Gaussian process does not contain (nontrivial) independent random
variables [ 8, Lemma 2.1]. Necessary and sufficient conditions
for a general SaS process to have an invertible spectral represent-
ation are given in [5 , Theorems 5.1 and 5.5]. A stronger foém of
invertibility for a nonanticipating SaS moving average is considered
in [ 8, Lemma 3.1]. SaS processes with invertible spectral repre-

sentation in L,([0,1].Leb), i.e. L -sp{f(t,*);t «[0,1]} = L, ((0,1],Leb)

2
are considered in [24]; clearly such a process has also invertible

spectral representation in La([O,l],Leb). Examples of invertible
SaS processes will be presented in the sequel.
For invertible processes the problem of finding their admissi-

ble translates can be reduced to finding the admissible translates

R T PR 3
LN L L SR
- - ‘e Y - - - - - R R -, e
TS N VT TY Y. TG NS TN S ST TS G0 W Y »




of the independently scattered measure Z, wlhich we now consider
first.

The next proposition is essentially based on [l12, Theorem
7.3]. It extends to independently scattered SxS measures with non-
atamic control measure the result in {3, 24] on admissible translates of in-
dependent increments processes in [0,T] which are stochastically
continuous and have no Gaussian component. It establishes a di-
chotomy for the translates of a general independently scattered
SaS random measure and it characterizes its admissible translates
as those of its atomic component.

The following notation will be used in Proposition 3.1. Recall
that if a g-finite measure space (I,0(7),m) is such that ¢ (]) con-
tains all single point sets, e.g. I is a Polish space, o(I) its
Borel sets, and I the 5-ring of Borel sets with finite m-measure,

then m =m, +m. where m, is purely atomic and m, is diffuse (non-

d d

atomic) [15], and the set of atoms is at most countable, say

A

{an7n e{1,2,...,N}nIN}, N the number of atoms. Thus if

z (2(B);B «I) is an independently scattered SaS random measure

with control measure m, it can be expressed as Z =Za +Zd, where

za and Zd are independent SaS independently scattered random

measures defined for all B eI by z,(B) =Z(AnB) and Z,(B) =2 (aaB),

and have control measures ma and md respectively. The atomic com-

ponent has a series expansion

N
z (B) = nzllB(an)Z({an})

which can be normalized by using the iid standard SaS random

({an}) with E(exp(iuzn)} = exp(-lul’y,

e

variables Z Z({an})m

as follows:
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N
z,(B) = [ lg(a)m

({an})zn.

-~ s
fapiieiager: e

«t

tereq

tom 2.1, et T =(2(B);B cl) be an indereondently sca

SaS randem measure with 0 <a <2 and zontrol megsure M =m +m
a 4’

et S=(S(B);B 1) be 2z set function. Then the Ffollowinj ar

ana

®

,.,‘::)a" "n o+ .
eu.d..z I.enc.

) S is an zdmissible translate of Z,

82
V]
]

1) S is an

')

8]

dmissible translate of Za’

12, S i3 concentrated on A, 1.e.

wn
w
1]

S({an})lB(an),

Il =-1Z

n=1

S|
3
|9

2/a

li 2

s({a_b)|%/m

. ({an}) <o,

n
Furthermore a translate which is not admissible 's singular.
Proof: Let :a and Cd be the stochastic processes defined on the
probability space (KI,C(YI),uZ) with parameter set [ by

z_(8,%) = x(An8), £ (3,%) = x(2°®), x ex!, Bcl.

Clearly

(3.1) Ca(BlZ(.Iw)) = Z(AnB,w) = Za(Brw)l Cd(BIZ('rw)) = Z(A?nBlw) = Zd(Brw)'a-S-r

so that La and Lq are independently scattered SaS random measures

with control measures m, and my respectively. Let Za and L3 also

denote the corresponding linear maps x +ca(°,x) and x +cd(',x)

from YI into YI.




i —1ii. Suppose Hghg < kg- Hence by Proposition 2.4, S-TF

and by definition of F the map F:L(2) ~X defined by
-n n . . . .
=T
F(_kzlakZ(Ak)) “k=lakS(Ak) 1s a well defined linear function, so

that S 1s a signed measure on I. Furthermore since

'S(B)i< C }}s|[E,Hz(B)|la = ISH]F[m(B)]l/“, S is absolutely

S
continuous with respect to m, i.e. S(B) = fBEdm for some z locally

C !
P,

in Ll(m):le eLl(B) for all B«el.

-1 -1 . B )
It follows that uS+ZCd Q:LiCd or equivalently gd( ,S) 1s an

admissible translate of the process Cd’ since Cd is linear. Now

2q(B/S) = s(aASnB) = [ Zdm = [Zdm £ s ().
AnB B

Since My is nonatomic it follows from a well known result
(15, p. 238] that we can find measurable partitions
{Bj k(B);k =l,2,...,Kj},j =1,2,..., of B for which

(3.2) max m, (B

d
1sk<K.
]

. B - 0 as j »w,
j,k( )) J

For notational simplicity we will omit in the following the de-
vendence on B. It follows that the triangular system of row-

wise independent random variables {cd(Bj k);k =1,2,...,Kj, j=1,2,...;

is infinitesimal, i.e. for every ¢ >0,

max P(Il;d(Bj k)l 2g) » 0 as j »o.

lsksKj
K.
Hence, since for every j, ;d(B) = Zkilcd(Bj,k)' we have from the
central limit theorem for triangular arrays and the fact that 23

has no Gaussian component that

K.

j

liminf liminf Var{ J ¢
e+0 Jreo k=

(FaBy i bee e URalBy 0 D2 =0
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3.5
(see e.g. [ 1 , Theorem 4.7]. Thus by Chebvshev's inequality
(3.3) -2 ( )1 (lz.(B, )1y -0
T, (B, . oy (1o (B, ~
k=1 d Jlk ( —-rv) d ],k

in probability (in Lp(P),p £ (0,2)) as j >« and ¢ =0.

On the other hand, 1if Sd(B) =szdmd and md(Bj,k) +0 as j »=
then Sd(Bj k) +0 as j »»~, and hence for j large

K. K.
(B) s (5. ) 77s. (B, )1 (1s (B, )
S = b . = A . _ i . .
d k=1 4 73,k k=1 d 73,k T (-g,¢€) d "j.,k
Similarly
*5

(3.4) kﬁl[sd(Bj'k) +Cd(Bj,k)]l(_€'€)([Sd(Bj,k) +:d(13j’k)l) >S4 (B)
in probability as j -« and ¢ +0.

Define for B ¢ the map ¢(B,-):YI-+YI by

%3
(3.5) ®(B,x) = liminf liminf ) x(B, )1 (]x(B., .)1|).
' ev0  jow k=1 /K T(7EsE) 3k
Suppose Sd is not identically zero.

such that Sd(B) #0.

@(B,Cd(',x))

Thus US+Z¢

diction.

md, so that

(3.6)

h.. - )
A

Therefore S, (B) = fBEdmd =0 for all BeI, i.e. z =

S(B) = [zdm_ =
B

R R T R AR IR
TV, AT TRDN V I VoP Ul W tha/ 70 Ve Y0+ "Wl VRIS SO o o Wy

Then there exists B ¢]

It follows from (3.3) and (3.4) that

=0, ¢(B,Sd+Cd(‘,x)) = Sd(B) d.S.

(B,')LUZ¢ (B,*) and hence ”s+z*“z which is a contra-

=0 a.e.

[
e

lz(an)lB(an) m ({an}).
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Reasoning as before we have

is an admissible translate of :a (or Za)’ and by (3.6)

:,(B/S) = s(AnB) = [ zdm = [zdm_ = S(B)
AnB B
i.e. § = Ca(-,S) is an admissible translate of Za'

ii => i, Suppose S is an admissible translate of Za' Since

= 1 = *

Z Za +Zd and Za and Zd are independent we have g uza uzd. Then
Hgyg U, implies ug. ., «u,. Indeed 0 =u, (B) =f_1uz (B -x), (dx)
a a X a d
implies My (B-x)= 0 a.e. Hy o hence O=HS+Z (B -x) =l (B-S-x) a.e.

a d a a
Hg and thus
d
g,z (B) = 1, (B -S) = ir“z (B-5-x)u, (dx) = 0.
X a d

ii = 1iii. Because S ¢ IF, S is absolutely continuous with

N

_ gl LN
respect to Mg S(B) = Zn=lS{an}lB(an). Let y:X° +X", where

V={1l,...,N} if N <= and N =N otherwise, be defined by

1l/a

(v(x)]1(n) = ¢(n,x) = ca({an},x)/m ({an}).

Thus by (3.1), ¥(n,*), n eN, are standard SaS iid random variables,

1/a 1/0

p(n,S) = ca({an},s)/m ({an}) = S({an})/m ({an})

and

v(n,S+x) = y(n,S) +y(n,x) = S({an})/ml/a({an}) + p(n,x).

, . . -1 -1 .
Now Ugpp < Uy implies Hotg 1Y <<uZ y T, 1.e.
a a a a




daT L gV d T LT @ T 8 N T o« A

Eﬁﬂl (S(aq)/ml/*({an:);n :N) 1s an admissible translate of the random
a0 - ‘
. element (.(n,+);n -\VN) defined on the probability space
(W1, 0y, .,). It follows from [20] if N == and trivially if
] < . ~N 2 ! S 2/1 i )
N <= that “n=ls (kan,)/m ({an,) <>,
o oo L2 N 2/%
iii = ii. Conversely, if Zp=1S ({an,)/m (ta i) <= it fol
lows from [20] and the fact that stable densities have finite
Fisher information [l10] that (S({an})/ml/l({an});n <N) is an ad-

missible tru.nslate of (i(n,*);n ¢N) (the result is trivial if

N < =), Therefore

3 {a 1) =
S({anf)lB(Lan,) S (B)

o124

n=1

is an admissible translate of the process

lB({an})ml/a({a )y (n,x) =

1 n

Wi~
It t~1%2

lB(an)c({an},x) = ;a(B,X)

n 1

and hence of Z4-

To prove that a translate S§ which is not admissible is
singular it suffices to consider such a translate in I, i.e.
from the proof i =>1ii, S(B) = fBEdm. If md(lzi >0) >0 then

. Thus assume S(B) =/ zdm_= I._ S({a_})l (a ). Since it

2/a

'.Js+Z.LUZ
is not admissible, by (iii) N == and IS°({a_})/m
1l/a

({anr) =®. Hence

fnan[ZO](S{%&)/m ({an});n e IN) is a singular translate of

(]

y o) . : ! st . . . '
(y(n,*):n E:N),l.e.us+zp iuzw which implies Hgygthge

It follows that the admissible translates of an SaS independ-
ently scattered random measure are quite different in the Gaussian

and non-Gaussian cases. Indeed, for Z Gaussian (o =2) every

element in its function space (i.e. its RKHS)

e e T
5'.1\ LR ST T S S
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= 15;S signed measure on J(l), S« mn, as L, (m):
dm 2 '
(see e.g. [9]) ie an admissible translate, while, e.g. for 2 ncn-

saussian with 1 <x <2 its only admissible translates are

S(8) = fBEdm, z-L ,(m), with z =0 a.e. m,, and
[

~N : . .2 2/,
“n=1 S(_an.); /m (tan}) < =, Hence for 1 < -2 the set of admis-

Sible translates is a proper subset of the functicn space IF
1

e . .
1z 1s given by

és .

am = Tx

IS

3
b

In particular, while a diffuse Gaussian random measure has a rich
class of admissible translates, a diffuse non-Gaussian Si1S

random measure has no admissible translate whatever. On the other

hand, if m (or Z) is atomic (md =0), the condition in Proposition
3.1 (iii) extends the Gaussian condition. Indeed if : =2 and

- ds - N d_s 1 - i 2 ; i 2/1 -
S(B) = fB gmdm = I _, s-(a)m(la b)), then Zis({a_ :)[“/m(fa_ ) <
. . ds
i1s equivalent to am eLz(m).

The results of Proposition 3.1 can now be used to obtain a
dichotomy for the translates of an invertible S1S process, and to
characterize its admissible translates as those of its atomic

component. In order to state the result for a $.5 process X with

spectral representation X(t) = f £(t,u)Z2(du) and control measure

I
m, we introduce the independent SaS diffuse and atomic component

b




processes of X:

X, (t) = f(t,u)Z{du) = (t,u)Z.(t),

H—
rn

f
ac

(t) = [f(t,u)z2(du) = [£(t,u) 2z (du).
A I

The atomic component Xa has a series expansion

T4

= : { ]
Xa(t) f(t,an)Z(\anJ) '
n=1

it

which can be normalized by putting

V2 a sy,

(ta_1), £ _(t) = f(t,an)m n

so that the ansarestandard SxS8 1iid random variables, for all t T,
2

-N
Ty £ (8) 1T <=, and

frorcsition 3.2. Let X=(X(t):t «T) be a SuS process with

0 <x <2, Invertible spectral representation X(t) =ff(t,u)Z(du) and

I
2ontrol measure m, and let s =(s{t);t eT) be a function on T. Then
the Soilowing are equivalent:
) s 18 an admisgsible translate of X,
717} s i3 an admissible translate of Xa’
e _ N . . N [ 2, 2/ <
2id) s (t) n=1Snfltia ) with I _ 1s |7/m™ " ({a }) <=
N . N 2
= t S < o,
i:lsnfn(t) with Zn=ll n] ®

Furthermeore a tranglate uvhich 18 not zdmisstble is sinzular.

L wTTR T e LTw L e
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Proof: 1. Since lB :Lx(m) = L(f), for any B =1, there exist

: (B,*) -sp<flt,");t-T', n=1,2,..., i.e.

n
Nn'\B)

:n(B,' = k=1 aq,k(B)f(tn,k(B)'°) such that
:n(B,-) *lB in Ll(m) as n v, DpDefine

NQ(B) r

fn(Brx) - ‘,\: an,k(B)X(tn,k(B)), X "X .

k=1

Thus
NQ(B)

( : L) = )
\3-7) rn(le( I3 )) i an,k(B)x(tn,k(B) IW)

[o_(B,u)z(du,w) +[1_(u)z(du,w) = Z(B,.)
T n I B

in Lp(?) (hence in probability) as n -«. Thus (tn(B,-);n: N)
converges in Ly~measure. Let (@n (B,*):;k ¢ IN) be a subsequence
k

converging a.e. and define

',.AX
Z(B) = Z(B,*) = liminf# (B,*)1 (+).
k -+ k {x;’bn (B,x) converges}

k

2(B,*) is a well defined (C-measurable function on im for each B < 1I.
Hence Z = (Z(B);B e¢1) is a stochastic process on the probability
X,

space ( C,u,), and from (3.7), 2(B,X(*,w)) =2(B,w) a.s., so that
X

~

Z is equal in law tc 2, i.e. Z is an independently scattered S3S

random measure with control measure m.

i --1ii. Let s be an admissible translate of X. From Proposi-

tion 2.4, s <IF, i.e.




Hence as in P i ti .1, F Zn =Zn i 2

n Proposition 3.1 ( k=lakX(tk)) k=laks(tk) is a vall
defined continuous linear functional on [ (X) and s(t) =F(X(t)).
Thus

Nn(B)
b = y
n(B,s) . an’k(B)s(t ,k(B))
N (B)
n
= F({ a, k(B)X(tn k(B))) ~ F(Z(B)).
k=1 ’ '

Hence for all B -1,

(3.9) Z(B,s) = F(zZ(B))

and

(3.10) Z(B,s +x) =

= Z(B,s) + Z(B,x).
Now if Z,(B,*) =7%(a%nB,+), then Zg=(24(B,);B 1) is an independ-
ently scattered SaS random measure with control measure md and by
(3.10) it has Zc(°,s) as an admissible translate.

But m

3 1s non-
atomic, thus by Proposition 3.1, 2

d(',s) =0, i.e. for all B -1,
5 5,.C c
0 = Zd(B,s) = Z(A nB,s) = F(Z(A nB))

= F(Zd(B))l
and hence

s(t) = F(X(t)) = F(Xa(t) +Xd(t)) = F(X, ()

(since Xd is obtained by a linear operation on Zd which implies

F(Xd(t)) =0). Therefore




{3.11) s(t) = F(Xa(t)) =F( > f (£)2))

i
Hh
(s
]
o3

1

n
t
wn

N where s_=F(Z ) and s =m ({a })sn. On the other hand
~$: Xy =X, (t,x) = “n=1f(t'an)2(tan:’X);t ¢T) has distribution ;Xa
and by, the linearity of the map x *ia(',x),the function

ig: Xa(',s) is an admissible translate of X and hence of Xa' But

SR N
oA = v of 3 !
‘.':f Xa(trs) n;lL(tran)Z({anJ ,S)
; N
. = ) f(t,a_ )F(z({a_}))
. - n
n=1
( N N
= ) f(t,an)s' = ) fn(t)sn = s(t),
n=1 n=1

i.e. s 1s an admissible translate of Xa'

ii —1i. The proof is identical to that in Proposition 3.1.

- i1 “=>1ii. The proof is as in Proposition 3.1, with
e n,x) = 2({an},x)/ml/a({an}), so that by (3.9),

S 5 1 /a0

L v(n,s) = 2({a1n ' 8)/ /l(tan*)

~ 1/ L/

3yl (3.12) = F(z(fa :))/m™ “(fa}) = s /m”" " (fa_:)
-.":\

Y. e

e = s .

S n

o
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To prove that a translate which is not admissible is singular,

it suffices to consider s < IF (X), i.e., s{t) =F(X(t)), as by Pro-

position 2.4, s /IF implies singularity. Suppose F(Xd(t)) #0.

Then there exists B 1 such that F(Zd(B)) #0 and by (3.9),

= 7 c*‘
Zd(B,s) Z (A"B,s)

F(z(ASaB)) = F(2.(B)) # O.

d

C ~=1 -1
r= 1
It follows from Proposition 3.1 that “s+XZd L “de and hence

. _ _ N .
Seex iy Therefore s(t) —F(Xa(t)) = Zn=lfn(t)sn and as 1in the

. 2 -
. -4 | 1 . . . . \
proof of Proposition 3.1, th=1'Spl =% implies Moax iy _

It follows from Proposition 3.2 that for an invertible SaS
process with nonatomic control measure every non-zero translate is
singular. In particular, this contains Corollary 10.1 of [24].
Applied to SaS processes with purely atomic control measure,
Proposition 3.2 is a stochastic process version of a result
proved in [22, Theorem 4] for SaS measures with discrete spectral
measures on separable Banach spaces. The proposition completes
the result in [22] providing a dichotomy for the problem of admis-
sible translates.

Proposition 3.2 also provides examples where the set of
admissible translates is a non-trivial proper subset of the
function space IF of the process X. E.g. if X (t) =:n=lfn(t)zn'

t - T, where Zl'z2"" are 11d standard SaS random variables with

l - ¢=22 and £ =-spf(f (t);n -N);t «T} =¢_, then
1 n *

X x
-
\

F o= fs:s(t) = o os £ (t), . Is/| < oer,




while the set of admissible translates is the infinite dimensicnal

subspace (since x2* 22) of IFJ for which ::=1!Sn;2 <=; hence we
have equality only if x =2, and proper inclusion if 1 < x <2. There

is a natural identification between the set of admissible trans-
lates, which is always a linear space, and the Hilbert space £2’
namely (sn;n ¢ IN) »s(t) =Z:=lsnfn(t). This map is invertible

with 1nverse map given by the transformation v defined in the

proof of Proposition 3.2 restricted to the set of admissible trans-
lates of X (cf. (3.12)). Thus for every 2 ¢ (0,2), the linear space

of admissible translates can be given a Hilbert space structure by

defining the inner product

<s,,8,> = <(s, ),(s, )>, = ] s, _s
1752 L,n'"%2,n" 72, T L %1,n%2,n
where Si(t) =Z;=lsi nfn(t)’ i=1,2 Note that in this case when
P Tl —- 1 ".‘1.* l/a* . .
L <w <2, HES;}IF = (;isn} ) and hence | IIF is not a natural

norm on the linear space of admissible translates, in contrast with
the case of Gaussian (a =2) and x-sub-Gaussian processes with
1l <1 <2,

Important examples of SaS processes with invertible representa-
tion are presented in the following.
Harmonizable SaS processes (and sequences).

Let X =(X(t):;t e), T =IRd or zd, d ¢« N, be an SaS harmonizable

process, i.e., X has the representation

X(t) = [ Y% aiau), t .,

I

where I =IRd or [-",-]d for T =IRd and zd respectively and Z is an

S:S independently scattered camplex random measure with finite control

measure m, referred to as the spectral measure of the harmonizable




orocess X. If the spectral measure m is nonatomic and 0 <o <2

then it follows from Proposition 3.2 that X has no nontrivial ad-
missible translate. When the stable distribution of Z is radiallv
symmetric, i.e., when X 1is stationary, this result exhibits a
different behavior compared with the stationary Gaussian processes
v =2, whose admissible translates are precisely the functions

£) = /e i<t,u>—

z(u)m(du), =z st(m). In contrast, if m is purely
I

discrete, i.e. X has a Fourier series representation

s

N i<cn,t>
X(t) = J b e Z_, N <=,
n n
n=1
with 2 's 1id standard SaS random variables and Z:zl[bn:d <», the

set of admissible translates 1is

i<e ,t>
n
e H
n

2
S i
-1 n

<w}

{s:s(t) =
n

’

| U1
-1

!
l| Sn/bn

and depends on 1, 0 <a <2, only via the seguence (bn;n < IN) €£1’
In other words for fixed (bn;n eIN) ef,, 1 <3 <2, define
Xi(t) = *n=1bneXpil‘cn’t>;Zn,a' where the Zn,a S are standard iid

S1S with B8 <2 <2 for 1 <8 <2 and 1 <o <2 for 3 =1. Then all these

processes Xu have the same set of admissible translates.

Continuous time SaS moving averages.

Another class of stationary SaS processes is the class of real

moving averages,

X(t) = [f(t-u)z(du), t <IR,
IR

where Z has Lebesgue control measure and £ eLd(Leb). When £

vanishes on the negative line, they are called nonanticipating

. . . th
moving averages and they occur as the stationary solutions of n

by M A e W e e Yy T
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order linear stochastic differential equations with constant co-
efficients driven by stable motion Z.
In the Gaussian case x =2 the admissible translates coincide

with the function space (RKHS)

IF2 {s:s(t) = [£(t -u)z(u)du, z <L, (Leb)}

2

= {g;s ¢L,(Leb), s/f ¢ L, (Leb) },

2

where ~ denotes Fourier transform.

Examples of moving averages with invertible spectral re-
presentation and therefore with no admissible translates, can be
obtained by taking

i) £ continuous and equal to zero on (-»,0) and at
infinity [ 2, Theorem 2],

ii) 2 € (1,2) and £ a Fourier transform of some function F
in Lu*(Leb) with F #0 a.e. [23 , Theorem 75].

Case i) includes nonanticipating moving averages with con-
tinuous kernel f, while case ii) contains certain nonanticipating
moving averages with discontinuous kernels £, namely the stationary
solutions ofnth order linear stochastic differential equations
with constant coefficients. There f(t) is a linear combination
of functions of the type tk-le-atl[o'w)(t) with k ¢t IN and a >0,
which are Fourier transforms of the La,(Leb) functions
“(k)/[ 27 (a +iu)]. Hence f is the Fourier transform of an

L .(Leb) function which is # 0, a.e., so that

sp/f(t -+):t «cIP} = Ll(Leb), i.e. X is invertible. Thus solutions

of nth order stochastic differential eguations driven by SaS motion




nave no admissible translate for 1 <=w <2. This is in sharp con-
trast with the Gaussian case x =2. E.g., if n=1, f(t) =e 1

and the stable Ornstein-Uhlenbeck (0OU) process

x(t) = [ e (FTWgiay)

has no admissible translates for 1 <2 <2 while for » =2 all
translates of the form
t
sit) = [ e W wydu, z eL

-0

2(Leb),

are admissible for the OU process X.

Discrete time SaS processes (SaS sequences ) with invertible
spectral representation have similar sets of admissible translates
in the Gaussian and non-Gaussian stable case. Of course nonadmis-
sible translates are sinqular.

Independent sequences and partial sums of independent SaS random
variables.

The set of admissible translates of a sequence of independent SaS
random variables X =(Xn;n e IN) is given by

)2

< o},
&

{s =(sn:n eDJ)7X(Sn/|an

The admissible translates of a sequence (Yn =%S=1Xk'“ e IN)

of partial sums of independent SaS random variables XK are

< 2 2
{s = (s :n eIN);nzl(sn —sn_l) /!!anla < w, g =0!.

Mixed auto-regressive moving averages of order (p,9) (ARMA(p.g)).

Let X =(Xn;n e IN) be defined by the difference equation
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n 1"n-1 P n-o n 1 ' n-1 3 n-g
where Z =(Zq;n < IN) 1s a sequence of 1id standard S$S:S random wvaria-
bles. If the polynomials P(u) =1 -aju ... —apup and

Q(u) =1 +b,u +... +bquq satisfy the condition P(u)Qf{u) #0 for all
u=:«C with 'ul <1, then the difference equation defining X has a

unique stationary solution of the moving average form

?
X = 1! g 2
n k:—w n-k k
and in addition
z, =X, - 1 h.X ..
j=1 J ]

The coefficients {gn;n ¢ IN} and {hn;n e IN} are uniquely determined

by the power series expansions

Q(u)/P(u) = § g.ud and P(w/Q@) =1 - 7 houl, jul«l,
2o J =1
j=0 =1
respectively. Thus L(X) = [(2), i.e. X is invertible, and hence,
by Proposition 3.2, s = (sn;n €¢Z) is an admissible translate of

X if and only if it is of the form

n
Sn = Z gn—kzk

k=—x

wh ,’__00 22 < @
where Lz ook .

We should note the different behavior of moving averages in
continuous and in discrete time. A continuous time moving average
may have no admissible translates, whereas a discrete time ARMA
sequence has a set of admissible translates identical to the Gaus-
sian case. The difference will be in the form of the Radon-Nikodym

derivatives.

A
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